Reconfigurable FPGA Realization of Fractional-Order Chaotic Systems
نویسندگان
چکیده
This paper proposes FPGA realization of an IP core for generic fractional-order derivative based on Grünwald-Letnikov approximation. design is applied to achieve reconfigurable chaotic systems. The real-time configuration boosts the suitability this particular different applications, including dynamic switching, synchronization, and encryption. proposed targets optimized utilization internal resources efficient employment external peripherals: switches I/O ports in board. digital dependent terms: binomial coefficients power function proposed. Three approximations using curve fitting are compared, settling quadratic approximation that balances accuracy efficiency. systems: Liu, Li Chen four-wing, verified both commensurate incommensurate orders cases, one approach order case two approaches case. realized Artix-7 board, yielding throughputs 1.1266, 1.434 Gbit/s cases three systems, respectively. Compared recent related works, implementation demonstrates its hardware potential applications.
منابع مشابه
Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems
Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...
متن کاملAnalogue Realization of Fractional-Order Dynamical Systems
As it results from many research works, the majority of real dynamical objects are fractional-order systems, although in some types of systems the order is very close to integer order. Application of fractional-order models is more adequate for the description and analysis of real dynamical systems than integer-order models, because their total entropy is greater than in integer-order models wi...
متن کاملFractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances
In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...
متن کاملSynchronization of Chaotic Fractional-Order Lu-Lu Systems with Active Sliding Mode Control
Synchronization of chaotic and Lu system has been done using the active sliding mode control strategy. Regarding the synchronization task as a control problem, fractional order mathematics is used to express the system and active sliding mode for synchronization. It has been shown that, not only the performance of the proposed method is satisfying with an acceptable level of control signal, but...
متن کاملChaotic dynamics and synchronization of fractional order PMSM system
In this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (PMSM) system. The necessary condition for the existence of chaos in the fractional-order PMSM system is deduced and an active controller is developed based on the stability theory for fractional systems. The presented control scheme is simple and flexible, and it is suitable both fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2021.3090336